RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

SECOND YEAR B.A./B.Sc. FOURTH SEMESTER (January – June) 2015 Mid-Semester Examination, March 2015

Date : 18/03/2015

MATHEMATICS (Honours)

Time : 11 am – 1 pm

Paper : IV

Full Marks : 50

[3×2]

[2×5]

[2×3]

[Use a separate answer book for each group]

<u>Group – A</u>

Select the correct alternative :

- 1. Let X be dense in \mathbb{R} and A be a proper subset of X. Then
 - a) A and X A both are dense in \mathbb{R} b) None of A and X A is dense in \mathbb{R}
 - c) A least one of A, X A must be dense in \mathbb{R} d) None of these
- 2. Suppose A, B are subsets of a metric space (X, d) such that d(A, B) = 0. Then
 - a) $A \cap B \neq \phi$
 - b) There is a point in X which is common to both \overline{A} and \overline{B} .
 - c) There is a point in X which is a common limit point of A and B
 - d) None of these
- 3. Consider the subset \mathbb{Q} of \mathbb{R} in usual metric
 - a) No proper subset of \mathbb{Q} is dense in \mathbb{R}
 - b) Only countably many subsets of $\,\mathbb{Q}\,are$ dense in $\,\mathbb{R}\,$
 - c) There are uncountably many subsets of $\mathbb Q$ which are dense in $\mathbb R$.
 - d) None of these

4. Answer <u>any two</u> :

- a) Define metric topology and equivalent metrics. Are any two metrics on a finite set equivalent? Justify your answer. [1+1+3]
- b) In a metric space, show that the union of two bounded sets is also bounded. If A is a subset of a metric space, show that diam (A) = diam (\overline{A}). [2+3]
- c) Define G_{δ} and F_{σ} sets in a metric space. Show that in a metric space, every singleton is G_{δ} . Find a subset A of \mathbb{R} in usual metric such that A^d , the derived set of A is infinite and $A \cap A^d = \phi$. [3+2]

5. Answer <u>any two</u> :

a) For each $n \in \mathbb{N}$, let $f_n(x) = nx$, $0 \le x \le \frac{1}{n}$ =1, $\frac{1}{n} < x \le 1$

Show that $\{f_n\}$ is not uniformly convergent on [0,1]

b) For each $n \in \mathbb{N}$ let $f_n(x) = nx^2, 0 \le x \le \frac{1}{n}$ = $x, \frac{1}{n} < x \le 1$

Examine if $\{f_n\}$ is uniformly convergent on [0,1] or not.

c) Let $f_n(x) = \frac{nx}{1+nx}$, $x \in [0,1]$. Show that $\{f_n\}$ is not uniformly convergent on [0,1].

6. State and prove Cauchy criteria for uniform convergence of the sequence of function $\{f_n\}$ on $D \subseteq \mathbb{R}$. [3]

<u>Group – B</u>

7. Answer <u>any two</u>:

- a) Obtain the pedal of $y^2 = 4ax$ with respect of vertex.
- b) Find the pedal equation of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with respect to focus as pole.
- c) Find the asymptates of the curve given by $y^4 2x^2y^2 x^4 + 2axy^2 5ax^3 + 2x + 3y 1 = 0$.

8. Answer <u>any three</u> :

- a) Solve: $\frac{dx}{x(y^2 z^2)} = \frac{dy}{-y(z^2 + x^2)} = \frac{dz}{z(x^2 + y^2)}$
- b) Obtain the necessary condition for integrability of the total differential equation Pdx + Qdy + Rdz = 0.
- c) Solve $x^6 \frac{d^2y}{dx^2} + 3x^5 \frac{dy}{dx} + a^2y = \frac{1}{x^2}$, by changing the independent variable.
- d) Find x, y as functions of t, where they satisfy the simultaneous equations $\frac{d^2y}{dt^2} 16x = t$,

$$\frac{d^2x}{dt^2} - y = 1$$
 and $y = 0$, $x = 0$, $\frac{dx}{dt} = 1$, $\frac{dy}{dt} = -\frac{1}{4}$ at $t = 0$.

e) Find the eigen values λ_n and eigen functions $y_n(x)$ for the differential equation $\frac{d^2y}{dx^2} + \lambda y = 0$ satisfying the boundary conditions $y(0) = y(\pi)$ and $y'(0) = y'(\pi)$.

_____ × _____

[3×5]

[2×5]